

Development of Cloud Liquid Water database using Global Cloudsystem Resolving Model for GPM/DPR Algorithm

Takuji Kubota¹, Toshio Iguchi², Masaki Satoh³, Tomoe Nasuno³, and Riko Oki¹

(1) Earth Observation Research Center, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan

- (2) Applied Electromagnetic Research Institude, National Institute of Information and Communications Technology, Koganei, Tokyo, Japan
- (3) Atmosphere and Ocean Research Institute, the University of Tokyo, Chiba, Japan
- (4) Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan.

Uncertainty of cloud in precipitation radar algorithm

- Cloud liquid water (CLW) in precipitating clouds can influence estimates in a precipitation radar algorithm, and attenuation by the CLW should be considered in algorithms of KaPR onboard GPM core observatory.
- The attenuation due to CLW is severer at the Ka-band than at the Kuband (e.g., Meneghini and Kozu 1990).
- In 2A25 algorithm for Ku-band Precipitation Radar onboard the TRMM satellite, the attenuation by CLW is estimated based on the result of a numerical simulation of storms with a cloudsystem resolving model (CRM) (Iguchi et al. 2009).
 - In the method, the attenuation due to CLW is estimated as a function of surface rain rate (SRR), separately for convective columns and stratiform columns.

Purpose of this study

- GPM/DPR flies over 65S-65N coverage.
- We have to collect more CLW database for the GPM than for the TRMM.
- Recently, a 3.5km-mesh global simulation has been performed using a NICAM by JAMSTEC & Univ. of Tokyo.
 - The NICAM is a global cloud-system resolving model (GCRM) (Satoh et al. 2014), and explicitly calculates moist convection using a cloud microphysical scheme, NSW6 (Tomita et al. 2008).
- In this work, we investigate attenuation by cloud liquid water (CLW) in precipitating cloud from NICAM simulations (Hashino et al. 2013)
 - Data period: 3 hourly data during 9 days from 12Z 16th to 00Z 25th 2008.
 - We have to be careful of considerable model-to-model disagreement in liquid water path, as reported in Li et al. (2008).

Summary

- CLW database using the global CRM (NICAM) data is developed for attenuation correction method of the GPM/DPR algorithm.
- In this work, CLW and PIA_{CIW} are estimated from the NICAM data 9 days on June 2008.
 - Overall, linear relationship between the surface rain rate (SRR) and the PIA_{CIW} at surface is found for the convective rain, while the relationship becomes much weaker for the stratiform rain.
- Vertical profiles of the CLW are classified with reference to rain types, SRR, latitudes, surface types, and temperature.
 - In the Tropics such as 10S-10N, clear peaks are found around 10-15 degrees Centigrade with small SRRs, while they are not found over the mid-latitude. This can be connected with shallow rainfall.
- Experiments of CLW uncertainty using DPR-L2 algorithms
 - Impacts of Ku product are small (< 2.5 %) and those of Ka products are relatively large (some places > 20%)

Experiments using DPR-L2 algorithms

DEF: use average CLW profiles STD: use average+STD CLW profiles

E-mail: kubota.takuji@jaxa.jp

Surface precipitation rates were calculated during Sep. 2014 (1-month)

Ratio = (STD-DEF)/DEF (%)

impacts of Ku product are small (< 2.5 %) (some places > 20%)

NICAM: A global cloud-system resolving model (GCRM)

"Global cloud-system resolving model" **NICAM**: Nonhydrostatic **IC**osahedral Atmospheric Model

The Earth Simulator

Direct calculation of cloud system by km-grid mesh covering the Earth

Validation results of the NICAM compared to the satellite data: Geostationary satellite

Classification of convective and stratiform rain in the NICAM data

 Convective and stratiform rain is classified by Nasuno and Satoh (2011), based on that of Churchill and Houze (1984) with

PIA by CLW from NICAM data: Ku vs Ka

Dependence of PIA_{CIW} at surface upon SRR over tropical (15S-15N) ocean averages with STD bars

-3 in dBR = 0.5mm/hr, 0 in dBR = 1.0mm/hr, 10 in dBR = 10mm/hr, 20 in dBR = 100mm/hr

Statistics for vertical CLW profiles

- The CLW profiles in the NICAM are classified by
 - surface rain rate (SRR)
 - collected according to a unit of dBR (10 x log10 (SRR))
 - convective/stratiform rain
 - temperature
 - CLW can highly depend upon temperature profiles including freezing level (FL)
 - surface type (land or ocean)
 - latitudes
 - 7 latitudinal zones without distinction of the hemisphere (EQ-10 deg., 10-20 deg. 20-30 deg., 30-40 deg., 40-50 deg., 50-60 deg., 60-90 deg.)

Profiles with Conv. vs Strat over

Profiles for Conv. over

100 200 300 400 500

CLW (mg/m3)

Profiles for Convective over ocean

Profiles are quite different for latitudes.